

 [image: logo]

Typedframe

Typed wrappers over pandas DataFrames with schema validation.

TypedDataFrame is a lightweight wrapper over pandas DataFrame
that provides runtime schema validation and can be used to establish
strong data contracts between interfaces in your Python code.

The goal of the library is to reveal and make explicit all unclear or
forgotten assumptions about your DataFrame.

Quickstart

Install typedframe library:

pip install typedframe

Assume an overly simplified preprocessing code like this:

def preprocess(df: pd.DataFrame) -> pd.DataFrame:
 df = df.copy()
 c1_min, c1_max = df['col1'].min(), df['col1'].max()
 df['col1'] = 0 if c1_min == c1_max else (df['col1'] - c1_min) / (c1_max - c1_min)
 df['month'] = df['date'].dt.month
 df['comment'] = df['comment'].str.lower()
 return df

To add typedframe schema support for this transformation we will
define two schema classes - for the input and for the output:

import numpy as np
from typedframe import TypedDataFrame, DATE_TIME_DTYPE

class MyRawData(TypedDataFrame):
 schema = {
 'col1': np.float64,
 'date': DATE_TIME_DTYPE,
 'comment': str,
 }

class PreprocessedData(MyRawData):
 schema = {
 'month': np.int8
 }

Then let’s modify the preprocess function to take a typed wrapper
MyRawData as input and return PreprocessedData:

def preprocess(data: MyRawData) -> PreprocessedData:
 df = data.df.copy()
 c1_min, c1_max = df['col1'].min(), df['col1'].max()
 df['col1'] = 0 if c1_min == c1_max else (df['col1'] - c1_min) / (c1_max - c1_min)
 df['month'] = df['date'].dt.month
 df['comment'] = df['comment'].str.lower()
 return PreprocessedData.convert(df)

As you can see the actual DataFrame can be accessed via the .df
attribute of the Typed DataFrame.

Now clients of the preprocess function can easily check what are the
inputs and outputs without the need to look at its internals. And if
there are some unforseen changes in the data an exception will be thrown
before the actual function will be invoked.

Let’s check:

import pandas as pd

df = pd.DataFrame({
 'col1': [0.1, 0.2],
 'date': ['2021-01-01', '2022-01-01'],
 'comment': ['foo', 'bar']
})
df.date = pd.to_datetime(df.date)

bad_df = pd.DataFrame({
 'col1': [1, 2],
 'comment': ['foo', 'bar']
})

df2 = preprocess(MyRawData(df))
df3 = preprocess(MyRawData(bad_df))

The first call was successful. But when we’ve tried to pass a wrong
dataframe as input we’ve got the following error:

AssertionError: Dataframe doesn't match schema
Actual: {'col1': dtype('int64'), 'comment': dtype('O')}
Expected: {'col1': <class 'numpy.float64'>, 'date': dtype('<M8[ns]'), 'comment': <class 'object'>}
Difference: {('col1', <class 'numpy.float64'>), ('date', dtype('<M8[ns]'))}

Problems with pandas DataFrame

Let’s return the initial code example above. What’s the problem here?

def preprocess(df: pd.DataFrame) -> pd.DataFrame:

Even when we have added type hints to our function, the user doesn’t
really know how he can use it. He must dig inside the code of the
function to find out things like expected columns and their types. This
violates on of the core software development principles - the
encapsulation.

Pandas DataFrame is an open data type. It introduces a lot of implicit
assumptions about the data. Let’s explore some examples where one can
easily overlook these implicit assumptions:

Required columns and data types:

df.grouby('state')['income'].mean()

The dataframe is expected to have state and income columns.
income column must have a numeric type.

Index name and type

df.reset_index(inplace=True)
x = df['my_index']

It is expected that a dataframe has a named index with a name
my_index.

Categorical columns

df3 = pd.merge(df1, df2, on='categorical_col')

The result above will differ based on whether a categorical_col in
df1 and df2 has exactly the same set of categories or not.

All these scenarios above can lead to a variety of subtle bugs in our
pipeline.

The concept of Typed DataFrame

A Typed DataFrame is a minimalistic wrapper on top of your pandas
DataFrame. You create it by creating a subclass of a TypedDataFrame
and defining schema static variable. Then you can wrap your
DataFrame in it by passing it to your Typed DataFrame constructor. The
constructor will do a runtime schema validation and the original
dataframe can be accessed through df attribute of a wrapper.

This wrapper serves 2 purposes:

	Formal explicit documentation about dataframe assumptions.
You can use your Typed DataFrame schema definition as a form
of documentation to communicate your data interfaces to others.
This works very well especially in combination with Python type hints.

	Runtime schema validation. In case of any data contracts violation
you’ll get an exception explaining the exact reason. If you guard
your pipeline with such Typed DataFrames you’ll be able to catch
errors early - closer to the root causes.

Features

Required Schema

You can define the required schema by passing a dictionary to a static
variable schema of a TypeFrame subclass. The dictionary defines
the mapping from a column name to a dtype:

class MyTable(TypedDataFrame):
 schema = {
 "col1": str,
 "col2": np.int32,
 "col3": ('foo', 'bar')
 }

Schema Inheritance

You can inherit one Typed DataFrame from another one.

The semantics of the inheritance relation is the same as with class
methods and attributes in classic OOP. I.e. if Typed DataFrame A is a
subclass of a Typed DataFrame B, all the schema requirements for B must
also be held for A. In case of any conflicts, the schema defined in A
takes a precedence.

class MyDataFrame(TypedDataFrame):
 schema = {
 'int_field': np.int16,
 'float_field': np.float64,
 'bool_field': bool,
 'str_field': str,
 'obj_field': object
 }

class InheritedDataFrame(MyDataFrame):
 schema = {
 'new_field': np.int64
 }

Multiple Inheritance

Multiple Inheritance is allowed. It has a “union” semantics.

class Root(TypedDataFrame):

 schema = {
 'root': bool
 }

class Left(Root):
 schema = {
 'left': bool
 }

class Right(Root):
 schema = {
 'root': object,
 'right': bool
 }

class Down(Left, Right):
 pass

Index Schema

You can specify schema for the index of the DataFrame. It’s defined as a
tuple of a dtype and a name which you assign to an index_schema
static variable:

class IndexDataFrame(TypedDataFrame):
 schema = {
 'foo': bool
 }

 index_schema = ('bar', np.int32)

Optional Schema

You can specify optional columns in a schema definition. Optional column
types will be checked only if present in a DataFrame. In case some
optional column (or all of them) is missing no validation error will be
raised. Besides that all columns from optional schema that are missing
in a dataframe will be added with NaN values.

class DataFrameWithOptional(TypedDataFrame):
 schema = {
 'required': bool
 }
 optional = {
 'optional': bool
 }

Convert Method

TypedDataFrame provides a convenient convert classmethod that
tries to convert a given DataFrame to be compliant with a schema.

class IndexDataFrame(TypedDataFrame):
 schema = {
 'foo': bool
 }

 index_schema = ('bar', DATE_TIME_DTYPE)

df = pd.DataFrame({'foo': [True, False]},
 index=pd.Series(['2021-06-03', '2021-05-31']))
data = IndexDataFrame.convert(df)

Supported types

Integers

np.int16, np.int32, np.int64, etc.

Floats

np.float16, np.float32, np.float64, etc.

Boolean

bool

Python objects

str, dict, list, object

WARNING: no actual check is performed for Python objects. They are all
considered to be of the same type object.

Categorical

Categorical dtype is specified as a tuple of categories. To avoid common
categorical pitfalls categorical types are required to have an exact
schema with all categories enumerated in the exact order.

class MyTable(TypedDataFrame):
 schema = {
 "col": ('foo', 'bar')
 }

df = pd.DataFrame({"col": ['foo', 'foo', 'bar']})
df.col = pd.Categorical(df.col, categories=('foo', 'bar'), ordered=True)
data = MyTable(df)

DateTime

np.dtype('datetime64[ns]')

typedframe library provides an alias for that also:
DATE_TIME_DTYPE

UTC DateTime

pd.DatetimeTZDtype('ns', pytz.UTC)

typedframe library provides an alias for that also:
UTC_DATE_TIME_DTYPE

Best practices to use Typed DataFrame

What are the best places to use Typed DataFrame wrappers in your
codebase?

Our experience with typedframe library in a number of projects has
shown the following scenarios where it’s use was justified the most:

Team Borders

Typed DataFrame helps to establish data contracts between teams. It also
helps to spot the errors caused by miscommunication or inconsistent
system evolution early. Whenever some dataset is being passed between
teams it makes sense to define a Typed DataFrame class with its
specification.

Public Functions and Methods

Typed DataFrame work especially well in combination with Python type
hints. So a good place to use it is when you have a public function or
method that takes as an argument / returns some pandas DataFrame.

Sources and Sinks of Data Pipelines

It is a good practice to provide schema definitions and runtime
validation at the beginning and at the end of data pipelines. I.e. right
after you read from the external storage and before you write to it.
This is where Typed DataFrames can also be used.

Similar Projects

	Great Expectations [https://greatexpectations.io/]. It’s a much
more feature-rich library which allows data teams to do a lot of
assertions about the data. typedframe is a more light-weight
library which can be considered as a thin extension layer on top of
pandas DataFrame.

	Marshmallow [https://marshmallow.readthedocs.io/]. A library for
Python objects serialization and deserialization with schema
validation. It’s not integrated with pandas or numpy and focuses only
on Python classes and builtin objects.

Indices and tables

	Index

	Module Index

	Search Page

Index

Docstrings

 nav.xhtml

 Table of Contents

 		
 Typedframe

_static/minus.png

_static/file.png

_static/plus.png

